\begin{tabbing} (\=(((((((((Unfold `fseg` 0) \+ \\[0ex]CollapseTHEN ((Auto\_aux (first\_nat 1:n) ((first\_nat 1:n \-\\[0ex])\=,(first\_nat 3:n)) (first\_tok :t) inil\_term)))$\cdot$) \+ \\[0ex]CollapseTHEN (ExRepD))$\cdot$) \\[0ex] \\[0ex]CollapseTHEN (HypSubst ({-}1) 0))$\cdot$) \\[0ex]CollapseTHEN ((Auto\_aux (first\_nat 1:n) ((first\_nat \-\\[0ex]1\=:n),(first\_nat 3:n)) (first\_tok :t) inil\_term)))$\cdot$) \+ \\[0ex]CollapseTHEN ((( \-\\[0ex]R\=WO "length\_append" 0) \+ \\[0ex]CollapseTHEN ((Auto\_aux (first\_nat 1:n) ((first\_nat 2:n \-\\[0ex]),(first\_nat 3:n)) (first\_tok SupInf:t) inil\_term)))$\cdot$))$\cdot$ \end{tabbing}